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Problems of optimization of elastic bodies are considered usually in determi- 

nistic formulation, and for their solution the methods of variational calculus 
and the theory of optimal control are applicable (c. f. , e. g. , [l] and [2 - 41). 
In the present paper there are considered those cases when either the complete 
information concerning the applied loads is not available,or it is known that the 

structure may be subjected subsequently to various loads of a certain class. 

The formulation is given of the problem of the determination of the shape of 
the elastic body, optimal for a class of loads, and there is indicated a general 
scheme for its solution based on the “minimax” approach used in the theory 

of games. Problems of optimization of elastic beams are considered and as a 

result of their solution certain features of optimal shapes are exhibited. 

1. Fotmulatlon of the problem. We consider the problem of determina- 
tion of the optimal form of an elastic body in state of equilibrium under the action of 

applied forces. We write the equilibrium equations in the form 

L(zjzr -f (1.1) 

Here 11 = (LQ (x), . . . . L(, (x)) is a vector-function which defines the state of the 
elastic medium ; f (x) is the vector of the external actions ; x is the vector of the space 

coordinates, taking values in some given domain D, occupied by the elastic body. In 
concrete problems, the components of the vector u can be chosen to be the stress-ten- 
sor components oij , the strain-tensor components eij, the displacements Wi, the mo- 
ments Mi which occur in the deformable medium, and so on. In (1.1). by L (v) we 

have denoted a differential operator with respect to the space coordinates Xi. The coef- 
ficients of the operator depend on the vector-function li = (ur (x), . . . , v,, (x)). The 
functions ci (s) determine the form of the deformable body and, in the problem under 

consideration, they play the role of controls. As functions Vi (x) , there may appear the 
distribution of the thickness and the areas of cross sections of the body and also func- 
tions which serve for the description of the geometry of the construction (for example, 
functions which define the position of the line joining the centers of the cross sections 
of a curvilinear beam). 

The requirements claimed for structures lead to constraints on the controls 

VEV (1.2) 

By V we have denoted some given set of admissible controls. If, for example, for the 
control u we consider the distribution of the thickness of plates or beams, then the con- 
straint (1.2) may have the form 6, < 21 (,T) < &,, where 6,, 6, are specified positive 
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numbers (fi, SC 6,). 
The form of the load applied to the body is not fixed in advance but we assume that 

a set F which contains all possible realizations of the exterior forces, is specified. We 

write this in the form 
fEF (1.3) 

and in order to solve optimization problems for the form of the body, we will take into 

consideration only forces from (1.3). If, for example, the optimization object is a plate 
of variable thickness and the external actions are one-sided forces resultant of which do 
not exceed the value of P, then the set F in (1.3) has the form F (f h 0. ,! f (.T)X 
dx g P. x E 0). 

External actions can occur also in the boundary conditions for Eq. (1.1). The form 
of the boundary conditions depends essentially on the problem to be solved and here in 
these general considerations it will not be concretely defined. 

The optimization problem consists in finding of the function ZI (or) from (1.2) which 
minimizes the functional (the weight of the body) 

G(v) = 7 1 cp (u) dx --, min 0.4) 
L) 

and satisfies for any f from (1.3) the strength and geometric conditions 

0 (2, y, Zl, Zlx, E, v,) < 0 (1.5) 

By ql we have denoted the specific weight of the material of the medium, while the 

quantity rp, which occurs in (1.4) is a specified function of u. The value o=( o!i,. . . . 
0,) is a specified vector-function of its arguments and the condition (1.5) represents 
a system of inequalities. The vector variable ?/ E Y denotes that part of the space 
coordinates which do not occur in the expression of the operator L and in the formula 

(1.4). 
For example, if we consider the problem of the bending of a plate in the plane x~.Q, 

then the variable 0 can be taken to be the coordinate which gives the distance along 
the normal from the neutral (median) surface of the plate. The domain Y of the vari- 
ation of this coordinate is determined by the position of the plate surface. In concrete 

problems we may have as inequalities (1.5) restrictions of different types. One type 
are the strength conditions, reducing to constraints on the stresses. As strength conditions 
we can consider, for example, the conditions 1 nij I< aij’ (where nij‘ are specified 

positive constants) which limit separately the allowable values of each component of 
the stress tensor, or the condition g (cij)- I? -6 0 (where k is the plasticity constant) 
representing the criterion of translation of the medium into the plastic state. TO another 
type belong the limits imposed on elastic displacements, arising from the geometric or 
stiffness requirements claimed for the structure. As an example we present the condi- 
tions 1 wi ( < ci (where pi are specified positive constants) which limit the allowable 
deflections of the deformed body. Possible are also combined limits on stresses and dis- 
placements. An analysis of various restrictions considered in structural optimization 
and a review of the results obtained is contained in [ 2 - 41. 

The formulated problem (1.1) - (1.5), because of the existing indeterminacy in the 
specific form of the applied loading, belongs to game problems (natural game) and for 
its solution we can apply the minimax (or guaranteed) approach. 
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2. The minimax approach. We indicate a method which allows us, in a 
series of cases, to reduce the solution of the problem (1.1) - (1.5) to the determination 
of the extrema of some variational problem. We assume that the solution of the bound- 

ary value problem for Eq. (1.1) with the corresponding boundary conditions and with the 

constraints (1.2),(1.3) can be found in a closed form u = u (x, f, v, v,). The depen- 
dence of u on f and v can be, in general, a functional one. We substitute the expres- 

sion for u into the left-hand sides of the inequalities (1.5). As a result, we arrive at a 
system of functional inequalities 

Qj (29 y7 f7 v~ vx> E Oj (29 y9 u (27 f7 07 ur)7 ux (x7 f7 u, vx)7 v7 ux) 

We determine the maximum of the quantity Qj (x, y, f, 8, v,) with respect to the 
variables f E F and y E Y. The maximization is carried out for fixed SE D and 
v E v. We assume that the maximum of the j th component of the vector Q, i. e. of 

the quantity Qj, is attained for fj = fj” and yj = yj*, i.e. 

52j (Z, yj* 7 fj” 7 V, V,) = maxye maxt=P Q j (x7 Y7 f7 VT vJ 

and we introduce the notation 

If the maximum of Qj with respect to f is attained at once at several different func- 
tions from (1.3). then for fj* we can take any of these functions. We can proceed 
exactly in the same way if the quantity y which realizes the maximum of the function 

Qj is not unique. Making then use of the conditions (2.1) and the notation (2.2) we 
arrive at the inequalities ~j*(s, v, v,) ~ o 

(i = 1, . . ..F) (2.3) 

Thus, the initial problem (1.1) - (1.5) reduces to the variational problem of minimizing 
with respect to u the integral (1.4) under the differential inequalities (2.3) and the 
conditions (1.2) imposed on the vecter-function v In order to solve this problem we 

can make use of methods developed in the theory of optimal control. 
In solving problems on the basis of the indicated approach, one of the two possibilities 

can occur. Either it turns out that in the class under consideration there exists a “worst” 

load for which the structure of minimum weight,found in the analysis for this load only,satis- 
fies the conditions of strength and stiffness (1.5) also for all other applied loads from 
the given class (a structure of this shape is precisely optimal for this class of forces, i. e. 
it is the solution to the original problem). Or the worst load does not exist and the solu- 
tion optimal for the class of loads is not optimal for any single load of the given set. 
Examples of both types will be presented below. 

Let us note that the minimax approach may be applied as well to problems with in- 
complete information concerning boundary conditions and properties of materials from 
which the structure is fabricated. 

The procedure described above of reducing problems of game theory to the problem 
of calculus of variations is applicable in those cases when it is possible to obtain the 
dependence of elastic solutions on controls in explicit form. This limits the applicabi- 

lity of the method in solving analytically multidimensional problems of structural 
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optimization. 

3. Optimieatlon for the cla81 of loads of cla#tfc beam). The 
equilibrium of an elastic beam of length Z, situated in the plane zy and loaded by the 
external forces f (x), parallel with the y-axis, is described by the equations 

dMldx = Q, dQldx = - f (3.1) 

Here M = M (x) and Q = Q ( x ) are, respectively, the bending moment and the 
transverse force, acting in a cross section of the beam, perpendicular to the z -axis. In 
the undeformed state the beam is situated along the x-axis and is fixed either at both 
endpoints x = 0 and z = I, or at the endpoint x = 0. The beam has a rectangular 
cross section of constant width Z+ = a and variable height vi = vi (5). The function 

vi = vi (x), which defines the form of the beam, is the desired quantity. We assume 
that the load applied to the beam is positive (the direction of the action of the load 

coincides with the positive direction of the y -axis) and its resultant does not exceed a 
given quantity P, i.e. 1 

f (4 > 0, s 
‘f(x)dx&P (3.2) 
0 

For any realization of the load, satisfying condition (3.2). the normal and the shear 
stresses o,andzXvmust satisfy the strength conditions of the beam 

oi= 1 (J, I - uo < 0, co2 = 1 z,y 1 - z, < 0 (3.3) 

where o,,, z,, are specified constants, and are computed from the formulas 

(3.4) 

Here and below, the coordinate y is measured from the center of the cross section of 
the beam and varies between the indicated limits. 

The problem of the optimization of the form of the beam consists in finding of the 

function vi = vi (x), satisfying the conditions (3.3) (where o, andz,,are calculated 
according to (3. l), (3.4)) for any realizations f = f (5) from (3.2), and minimizing 
the integral (the weight of the beam) 

1 

G = ay 
s 
’ u1 (x) dx (3.5) 
0 

4. The determination of the optimal form of articulated beam. 
The boundary conditions for the equations (3.1) in the case of a beam with articulated 
endpoints have the form 

M (0) = M (1) = 0 (4. I) 

Before we proceed to the solution of the problem, we clarify some properties of the 
functions M (x) and Q (x) , needed in the sequel. To this end, we integrate Eqs.(3.1) 
with the indicated boundary conditions. As a result we obtain 

1 1 

M(x) =~WG)f(W, Q(x)= ~T(x,t)f(t)dt (4.2) 

0 0 
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for O<t<x, 

K(x,t) = z(t;t) for x<t<l 

T(x,t)= -4 for o<t<z, 

T (x, t) = 1 - + for x< t <E 

From the positivity of the functions K (x, t) and f (t) there follows that M (x) > 
0. We fix the point x E [Z / 2, 11 and we consider the set of values taken by the 
quantities Jri7 (x) and Q (z) f or all possible realizations f = f (t) from (3.2). We 
denote by mast M (x) and maxi Q (XT) the maximum values of the bending 
moment and of the modulus of the transverse force and we will prove that for I / 2 < 
z < 1 we have 

maxfM(x)=Px(l --ri, maxiIQ(x)l =F (4.3) 

To this end, making use of the formulas (4.2), we perform the following estimates: 

M(x)&ma~~K(x,t)~f(t)dt=Px(l -r) (4.4) 
0 

The maximum with respect to t in (4.4) is computed for 0 < t 4 1. We also note 

that for the realization f (t) = P6 (t - x) the moment M (x) = PX (I - X) / 1. 
By 6 we have denoted the 6 -function. From here and from the above givei estimate 

(4.4) we obtain the validity of the formula (4.3) for M 
The proof of the relation (4.3) for Q, is carried out with the aid of the similar esti- 

mates 

1 Q (x) I< vrai maxi 1 T (x, t) 1 if (t) dt = xP/l (4.5) 
0 

Here by vraimax, 1 T 1 we have denoted the essential maximum with respect to 

t (0 < t < 1) of the piecewise-continuous function T (x, t) which is discontinuous 
at t = X. We substitute the realization f (t) = P6 (t - 2’) with I / 2 < x1 < x 

into the formula (4.2) for Q and we compute the integral. As a result we obtain 

Q (x) = P.zG / 1. At the limit for x1 -+ x - O’we have lim 1 Q (x) 1 = Pz / 1. 
From here, taking into account the inequality (4.5), we obtain the formula (4.3) for Q. 

Taking into account the symmetry of the conditions of the problem with respect to 
the point z = l/2, in what follows we will carry out all arguments only for l/2 < 

x& 1. 
Using the above mentioned properties of the functions M (CC) and Q (x), we proceed 

to the finding of explicit expressions for aI* and !&*. First we determine the quan- 
tities Q, and Q2,. Making use of the formulas (2. l), (3.4), (3.7). (4.2), we obtain 

1 

91 =+K(x,t)f(t)dt- so UZ,l (4.6) 
0 

c&=$ &- Ii ~)~T(x,t)j’(~)d~+(~-4&)$‘~K(x,I)j(t)dt~-ro 
0 0 
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The expression for the function Qr*, obtained after use of formulas (2.2) (4.3) (4.6) 
and after computing the maxima of the function QI with respect to J from (3.2) and 

with respect to y from the interval -v,/ 2 & y < or ! 2, has the form 

tJ1* _ 6pJ: -.-[i -+)-50 
a2112 (4.7) 

Let us determine the function Q. z*. To this end we use the formulas (2. Z), (4,3), (4.6). 
The expression which occurs between the absolute value signs in the formula (4.6) for 
9s is a linear function relative to g2 and, consequently, the maximum with respect to 

y of the function fd, for -u1 /’ :! < y < u1 / 2 is attained either for ys =T ~1~~14 
or for y2 = 0. Computing the indicated maxima, we write the expression for f;2,* in 

the form Q2” = max (YI, Y,) - To 

Applying formula (4.3) for the computation of the function Ya , we find 

(4. S) 

(4.9) 

Proceeding in the same way as in the proof of the relation (4.3) for Q, we obtain 

Making use of the obtained expressions for the functions RI* and S&s*, we give the 
conditions which must be satisfied by the function v1 = ur (x) in order that the ine- 

qualities (2.3) should hold. The first of the inequalities (2,3), after substitution in it the 
expression (4.7) for QI * , leads to the condition 

(4.11) 

Substituting the expression for Q, * from (4.8) - (4.10) into the second inequality of 
(2.3) we have (h = a&, / 3P) 

(4.12) 
s< 1 
ax L %(I-z) min (hu12, 2hr1,~ - XUl, 2hQ2 + (I - 2) Vl) 

_g> 1 - 5 (1 -z) max (--ke2, 2h74* -. SUM, - 2hv,? + (I _ x) ul) (4.13) 

The inequalities (4.12), (4.13) can be simplified if we note that the third expression 
written between the parantheses in (4.12) is greater than the second one and that in 
(4.13) the second expression is smaller than the third one. Taking this into account, 
we write the inequalities (4.12). (4.13) in the following manner: 
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dvl<_! 
ax ’ x(1-x) - min (hv12, 2b1* - ZQ) 

s> I x (1 - Z) max (- Aur*, - 2hzll” + (I - 5) UJ 

(4.14) 

(4.15) 

We divide the domain S (1 / 2 & x < I, ur > 0), in which we look for the solu- 

tion of the optimal problem, into three subdomains 

As, (I I 2 & 2 < 1, VI > xl); s, (I I2 < x < 1, (1 - x) I h < VI < x / a) 
s, (I I2 < x < 1, 0 G VI < (1 - x) / h) 

In the subdomains indicated the inequalities (4.14), (4.15) can be written in the form 

hV12 
<*< 

XV12 
- 

x(1-x) ’ dx x (1 - 2) ’ (x, 2'1) ES1 (4.16) 

hVl3 
(dvl_< 

2hv1.2 - xvi - 
Z(J_x) ’ dz ’ x(l-x) f (“~“l)ES2 (4.17) 

- (z, VdES3 (4.18) 

The inequalities (4.16) are consistent for any (x, vr) E S,. For the solvability of the 
inequalities (4.17) in the domain S, and of the inequalities (4.18) in the domain S, 
the following conditions 

ur > 2 / (3Q, u1 > 1/(43L) (4.19) 

must be satisfied. 

Thus, the initial problem of the optimization of articulated rectangular beams of vari- 
able height has been reduced to the determination of a continuous function vi (a~), satis- 

fying the finite inequalities (4. ll), (4.19) the differential inequalities (4.16) - (4.18) 
and minimizing the integral 1 

’ G = 2ay 
s 

v1 (5) dx 3 min (4.20) 

r/a 
The functions ur = ur (s), satisfying the inequalities (4.11). (4.16) - (4.19) will be 

called admissible and here we investigate some of their properties which will be used 

in the sequel. The admissible functions must satisfy the differential inequality 

& < 2hV12 - xvi E g, (z, Vi) 
dx ’ z(I---2) 

appearing in (4.17) and (4.18). Let us consider an arbitrary admissible function u1 (x), 

satisfying the condition vr (2”) = v,” and representing the solution of some differen- 

tial equation dv, / dx = g, (x, vl)) whose right-hand side, by virtue of the above 
given inequality, is estimated in the following manner: g, (x, r+) < g, (5, vi). Toge- 
ther with the equation for vr we examine the equation dh / dx = g, (5, h) with the 
initial condition h (5“) = vl@‘. From the theorem on the comparison of the solutions 
of differential equations we obtain the estimate vr (x) < h (x) for X’ < x < I?. 

The expression for h (x), obtained as a result of the integration of the equation 

& / dx = g, and the determination of the arbitrary constant from the condition 
h (:f”) = ni”, has the form 

h 
1-x 

= 2h In (p / Z) ’ 
P = x~Oe(‘-““) ; 2Av,0 (4.21) 
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Let us investigate the behavior of the integral curves h (x) in dependence of the posi- 
tion of the initial point (a?, or’). If the values 9, t.+’ are such that the constant 
/I > I, then, as we can easily see from (4.21) h (z) -+ 0 for 2 --t 0. In this case, 
taking into account the above proved inequality t~i (x) < h (z), for the admissible 
function z+ (a~) we have u, (z) + 0 for 2 -+ 1. 

For initial values z”, vi” such that _CL < I!, the integral curves h (2) diverge at infi- 

nity for x tending to p. If however the quantities z’, vi0 satisfy the condition 

xo (1 --x0) 
exp 2hVl” = 

I 

then for z -+ ,? there is an indeterminacy in the formula (4.21) for h, which, removed 

by 1’Hospital’s rule, gives h (1) = .! / 2h. The function h (z) from (4.21) with p = l 
will be denoted by IV, (z). 

Making use of these properties of the function h (x), we show that the solution of the 

optimal problem (4.11) (4.16) - (4.20) has the form 

( WI (4, 1/2<xsgx* 

u1= W,(i), x*<x<z (4.22) 

Wl(X)+g(l - -q, W,(x) 3 E-x 
2hln(Z/x) 

The quantity X* is determined in the following manner. Let E be a root of the equation 

W, (E) = W, (Q, which can be written in the form 

[ 
x(l~4)]“ln (+) = f, 6P@ x - 

alz$ 

If 5 satisfies the inequality 1 / 2 < E < 1, then we set X* = ,$ Otherwise, the 
quantity x* in the formulas (4.22) is taken to be equal to x* = I / 2. The first case, 
as can be easily verified, occurs for 

i6 (In 2)'. 
x ,( 16 (In 2)k and the second one for 3c > 

The proof of the optimality of the function (4.22) is concluded in the verification 

of the fact that the given function is admissible, i. e. satisfies the conditions (4.11). 

(4.16) - (4.19). and that there is no other admissible function t~i (x) for which the 
functional (4.20) takes a smaller value than for z+ given by (4.22). 

First we consider the case x < 16 (In 2)’ and we determine the intervals of the vari- 
ation of x, for which the inequalities (4.16) - (4.18) hold by the substitution o,=lt 1(x 
Performing elementary computations, we obtain that the inequality (4.16) is satisfied 

for 1 / 2 < x < a ES ‘I,1 (1 + 1/ 4 / (4 + x)), the inequality (4.18) for l/2 < x < c z 
l/81 (4 + 1/ 16 - ~1, and the inequality (4.17) for I / 2 < x < p E min (a, c). We can 
verify that x / Zh < VIrz (x) < x I ?, for 1 / 2 < z < 1, pvz cx) == z I 3, for x = 1. 
From here, in particular, it follows that the quantity x 1 = l6Zi (x + 16) , the root of the . 
equation x1 / 2h = lV1 (x’) satisfies the inequality x1 > x*. Therefore, for the proof 
of the inequalities a 2 x*, p > x*. c 2 x* it is sufficient to show that a >- x1, p > x1, 

c 2 x1 for 0 < x. < 16 (In 2)z, which is obtained by elementary computations. The 

curve 1~~ (x) from (4.22) is either in the domain sz or in S, _t S, (11’~ (x) < x / h) , 

depending on the value of the parameter x . The inequalities (4.17) (4.18) will be 
satisfied since for z.1 = ll’, (x) in the right-hand sides of these inequalities the equality 
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signs prevail. This follows from the construction of the function Wz (z) , Consequently, 
the function c1 (I), specified by the equalities (4.22), is admissible for 0 < x\( 16.(in 2)~. 
For x > 16(ln 2)Y the function Q = llYz (2) (I / 2 < T < 1) is also admissible, since for 

2‘1 = IV2 (x) the conditions (4.17), (4.18) will be satisfied. 
Let us show now that the admissible function (.I (x) from (4.22) is optimal. For this it 
is sufficient to prove that the graph of any other admissible function (,I (5) is situated 
not below the curves II, (x) and VI.* (x). For 1 i 2 < z s Z* , the admissible or (I), as 

it follows from (4.12). must be situated not below the curve 11, (z), i.e. ~‘i (z) > 11/i (z). 
Let us prove that for Z* I; z < 1 the inequality ~‘i (z) > 11, (z) is satisfied. Let us 
assume the opposite, i.e. that at some point z = ~1 (X * < xi & I) the admissible func- 
tion r1 (x) satisfies the inequality z’i (xi) < I$, (~1). Sut, as mentioned above, for the 
admissible curve c1 (z) which passes through the point (II, ?I (xi)), we have c1 (2) ---f 0 
for z - 1. Therefore the trajectory c1 (2) originating fromthepoint (51, 2’1 (xi)), inevi- 
tably hits the prohibited domain defined by the inequalities (4.19) and thus the assump- 
tion of the admissibility of the function u1 (I) will be violated. The obtained contradic- 
tion proves the validity of inequality r1 (x) > lVz (I) for z* < z < 1. Consequently,the 
function 2;i (z) defined by the formula (4.22). is optimal. 

For the obtained optimal solution we estimate the magnitudes of the stresses 0% and 
r,y which appear when the concentrated force 1) acts on the beam. We denote here 
by or the maximum value of the normal stress along the transversal section (i.e. with 
respect to y) , and by r,, the essential maximum of the shear stresses. If the concent- 
rated force P is applied to the optimal beam at the point E (Z/ 2 < c < x*), then 
the quantities ox (2) and rXy (x), as it follows from the formulas (3.4), (4.2). (4.22), 

satisfy the inequalities oX (zz) < oO and rXy (5) < z, (I / 2 ,( 5 SI 1). The equa- 
lity ox = crs is attained for x = g. If however x* < E < 1, then (5, < o,,, 

rXy < rO. In this case the limiting value of the shear stress r,y = r. is attained for 
x = g, while the equality o, = o,, holds if x = E = x*. 

Thus, by applying a concentrated force to the optimal beam at any point 2 from the 

interval (I / 2, 1) , the limiting state is attained only at this point and, consequently, 
at the designing of a beam with a fixed load there will be additional possibilities for 
optimization. This immediately confirms the determination of the optimal form for 

fixed forces (the corresponding computations are not given here). Consequently, for the 
problem under consideration there is no worst (in the above indicated sense) load and 
the optimal form of the beam for the class of the forces is not optimal for any of the 

individually realization of the force from the given class. 

5. The optimal form of a cantilever beam. For cantilever beams 
which are fixed at the point J: = 0, the distributions of the transverse forces 0 (x) 
and of the bending moments M (x) have the form 

@(a$ = ji(l)dl, M (1~) = i ’ \” - 9 f (t) 02 
(5.1) 

x x 

maxf Q (2) = P, maxf 1 M (2) 1 = P (I - X) (5.2) 

The maximum of Q (x) is realized for any fixed s from the interval 0 < x < I, 
when all the load is applied at the right-hand side of the pointx (f (t)=O for t < x). 
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The load which furnishes the maximum for 1 hf (5) 1, is a concentrated force of mag- 

nitude P, applied at the free end of the beam at the point z = I, i.e. f (t) = 

Pa (t - 1). The formulated assertions can be proved in the same way as it has been 

done in Sect. 4 in the investigation of the corresponding properties of the quantities, Q 
and ikf. 

For the determination of the functions Gt* and Q2,* we make use of the formulas 

(2.2), (3.3). (3.4) (5, l), (5.2) and, without carrying out the explicit computations which 

are also similar to the corresponding computations of Sect. 4, we give the final formulas 

1- 
(I -x2): dvl 3P (I - z) dv1 

--, 
01 dz avla dz 1 $_, () - ‘09 dz i 

3P (x - 1) dvl 

a ~11~ ds I 

(5.4) 
- ro, 

Substituting the expressions (5.3). (5.4) into the conditions (2.3), we obtain that for 
the fulfilment of these conditions it is necessary that the function ui (x) satisfies the 

inequalities 6P (1 - x) ‘/a 
Ul(4 2 (260 I 7 

We consider now the continuous function 

i 

6P (1 - x) ‘/a ll60 1 7 o<z<s* Vl = 
3P 

2azo’ 
x”<x<l 

(5.5) 

(x* = 1 - 3Po,/8ar,") 

and we prove that it describes the desired optimal form, i. e. n1 = u1 (x) supplies the 
minimum of the functional (3.5) considered in the class of the continuous functions 

% = Vl (x)7 satisfying the inequalities (2.3) with a,* and f&* from (5.3), (5.4). 
Since the conditions (5.4) are necessary, and other admissible (in the sense of these con- 

ditions) function ZJ~ (x) will lie not below the graph ofthe function( 5.5), and, consequently, 

it will impart to the functional (3.5) the larger value. It can be also easily verified, car- 

rying out the computation with the formulas (5.3) - (5.5) that Q,* & 0 and Q,* < 
0 for 0 < 5 4 1. Consequently, r_+ from (5.5) gives the optimal form. 

We mention some properties of the obtained optimal solution. We denote here by oz 
and r3~y the maximal values of these quantities across the transverse section of the 
beam (Le. with respect to the variable y) . If the concentrated force P is applied at 
the free end of the beam (E = Z), then for 0 < 5 4 X* , according to the formulas 

(3.4), (5. l), (5.5) we have o, (x) = oo, -cXy (x) 4 ro (zzy = zo at the point 
z = x*, while on the segment z* < x< I we have rt,v (5) = -cs, ox (x) < o,,. 
If however the force p is applied at the point E E (x* & E < l), then for 0 < 

x < E we have a, (x) < 00, Z,Y (x) & z, (rXy (x) = z,, x* < x & E), while 
for g < z < l we have the equalities ol: (x) = zXy (x)=0. In the case when 

O(!<s *, then on the entire segment 0 < g & 1 the inequalities o, < oO, 

r,y < r. are satisfied. 
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Thus, the simultaneously limiting states are attained in all cross sections of the beam 

only under the action of a concentrated force applied at the free end of the beam. 
Therefore, for the problem under consideration (in contrast to the problem discussed in 

Sect.4) there exists the worst force in the class F, for which the optimal solution ob- 

tained with regard solely to that force, is also optimal for the entire class as a whole. 
The author thanks F. L. Chernous’ko for giving consideration to this paper. 
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AXISYMMETRIC CONTACT PROBLEM FOR AN ELASTIC INHOMOGENEOUS 

HALF-SPACE IN THE PRESENCE OF COHESION 
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G. Ia. POPOV 

(Odessa) 

(Received September 11, 1972) 

There is obtained the exact solution of the axisymmetric contact problem on 

the indentation of a circular punch into an elastic half-space having a variable 

modulus of elasticity E = E,z” (Cl < y < 1) in the case of the presence of 
complete cohesion. 

1. For the formulation of the axisymmetric contact problem on the indentation of 
a circular punch into any linearly-deformable foundation, obviously, it is sufficient to 
know the vertical and radial displacements of the surface points of the foundation due 
to the action of vertical and radial loads of the form 

ps(r) = S(r-pP)? q. (r) = 6 (r - P) (r, P > 0) (1.1) 

where 6 (z) is Dirac’s impulse function, describing in this case a concentrated load 
along a circumference (of radius p). 

We adopt the following rule for the signs of the loads and displacements. The verti- 
cal loads and the corresponding displacements are considered to be positive if they are 
oriented downwards while the radial load and displacement is positive if they are orien- 


